Pushing for the Extreme: Estimation of Poisson Distribution from Low Count Unreplicated Data - How Close Can We Get?

نویسنده

  • Peter Tiño
چکیده

Studies of learning algorithms typically concentrate on situations where potentially ever growing training sample is available. Yet, there can be situations (e.g., detection of differentially expressed genes on unreplicated data or estimation of time delay in non-stationary gravitationally lensed photon streams) where only extremely small samples can be used in order to perform an inference. On unreplicated data, the inference has to be performed on the smallest sample possible—sample of size 1. We study whether anything useful can be learnt in such extreme situations by concentrating on a Bayesian approach that can account for possible prior information on expected counts. We perform a detailed information theoretic study of such Bayesian estimation and quantify the effect of Bayesian averaging on its first two moments. Finally, to analyze potential benefits of the Bayesian approach, we also consider Maximum Likelihood (ML) estimation as a baseline approach. We show both theoretically and empirically that the Bayesian model averaging can be potentially beneficial.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drift Change Point Estimation in the rate and dependence Parameters of Autocorrelated Poisson Count Processes Using MLE Approach: An Application to IP Counts Data

Change point estimation in the area of statistical process control has received considerable attentions in the recent decades because it helps process engineer to identify and remove assignable causes as quickly as possible. On the other hand, improving in measurement systems and data storage, lead to taking observations very close to each other in time and as a result increasing autocorrelatio...

متن کامل

Exact maximum coverage probabilities of confidence intervals with increasing bounds for Poisson distribution mean

 ‎A Poisson distribution is well used as a standard model for analyzing count data‎. ‎So the Poisson distribution parameter estimation is widely applied in practice‎. ‎Providing accurate confidence intervals for the discrete distribution parameters is very difficult‎. ‎So far‎, ‎many asymptotic confidence intervals for the mean of Poisson distribution is provided‎. ‎It is known that the coverag...

متن کامل

Estimation for the Type-II Extreme Value Distribution Based on Progressive Type-II Censoring

In this paper, we discuss the statistical inference on the unknown parameters and reliability function of type-II extreme value (EVII) distribution when the observed data are progressively type-II censored. By applying EM algorithm, we obtain maximum likelihood estimates (MLEs). We also suggest approximate maximum likelihood estimators (AMLEs), which have explicit expressions. We provide Bayes ...

متن کامل

The Negative Binomial Distribution Efficiency in Finite Mixture of Semi-parametric Generalized Linear Models

Introduction Selection the appropriate statistical model for the response variable is one of the most important problem in the finite mixture of generalized linear models. One of the distributions which it has a problem in a finite mixture of semi-parametric generalized statistical models, is the Poisson distribution. In this paper, to overcome over dispersion and computational burden, finite ...

متن کامل

Estimation of Parameters of the Power-Law-Non-Homogenous Poisson Process in the Case of Exact Failures Data

  This expository article shows how the maximum likelihood estimation method and the Newton-Raphson algorithm can be used to estimate the parameters of the power-law Poisson process model used to analyze data from repairable systems .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2013